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Entropy of Einstein—Maxwell-Dilaton—Axion
Black Holes
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The entropy of Einstein-Maxwell-dilaton—axion black holes is calculated by using the
improved brick-wall model. Taking into account of the statistical physics, we propose
notto consider the superradiant modes. The result shows that the nonsuperradiant modes
do contribute exactly the area-law entropy for extreme black hole. Moreover, our cut-
off & which does not require an angular cut-8ff independent of anglke. As for the
extreme black hole, we found that its entropy is zero.
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In order to give a statistical explanation of black hole entropy, 't Hooft pro-
posed brick-wall method in which the black hole entropy is identified with the
entropy of the quantum fields surrounding the black hole itself ('t Hooft, 1985).
Since the density of states approaching the horizon diverges, in order to avoid the
divergence in the entropy, he has to introduce the cut-off of the order of Plank
length, which is interpreted as the position of a “brick wall.” Mathematically, the
region of nonzero wave function is limiteditin + ¢ andL, wherer , is the radius
of event horizon and, L are ultraviolet cut-off and infrared cut-off, respectively,
ande < ro, L > r,. 't Hooft himself studied the contribution to the entropy of
Schwarzschild black hole due to scalar field. He found that the leading term of
scalar field entropy is one fourth of the area of event horizon. After this, the method
was applied to scalar field and neutrino field in various black holes background
(Cognola, 1998; Demert al., 1995; Gao and Shen, 2002; Ghosh and Mitra, 1994;
Lee and Kim, 1996; Shen, 2000, 2002; Skl 1997; Shen and Chen, 1999),
where it showed that the leading term of neutrino field entropy is seven eighth of
the area of event horizon. Recently, the method was extended to the scalar and
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neutrino field in rotating Kerr—Newman black hole space-time @tlal,, 1997;

Liu and Zhao, 2000), where it has been shown that both scalar and neutrino field
have two kinds of mode: superradiant and nonsuperradiant modes. The entropy is
composed of the superradiant and nonsuperradiant modes. Both modes contribute
simultaneously to the entropy with the same order in terms of the cut-oiff
particular, the contribution of the superradiant mode is negative. To avoid diver-
gence in this method when the angular velocity tends to zero, the authors propose
to introduce a lower bound of angular velocity. Moreover, from the lower bound of
angular velocity, they obtain tifedependence structure of cut-off, which naturally
requires an angular cut-dff Finally, if the cut-off,e ands satisfy a proper relation,

the entropy satisfies the area law.

In this paper, we give the calculation of entropy for Einstein—Maxwell-
dilaton—axion black holes due to scalar and neutrino fields. Here we propose not
to consider the entropy of superradiant modes. We consider that the bosons of
superradiant modes do not satisfy Bose distribution, while fermions do not display
supperradiance (Wald, 1984). Therefore we propose not to consider this modes. In
fact, the nonsuperradiant part do exactly give the Bekenstein entropy. Moreover,
our cut-off which does not require an angular cut<i$ independent of angle

We have ever met a difficulty when the brick-wall method was applied to
Schwarzschild—de Sitter space-time (Gao and Liu, 2000). Different from non-de
Sitter space-time, there are two event horizons in Schwarzschild—de Sitter space-
time. The two event horizons have different temperatures. Therefore the radiation
between them is not in thermal equilibrium. It is apparent that we should not use
the brick-wall model which is based on the thermal equilibrium in a large scale. In
other words, the region. + ¢ andL is not in thermal equilibrium. Former work
tells us that the leading term of entropy in the brick-wall method comes from the
contribution of the field very close to the horizon. So, we may assume that there is a
thin membrane of quantum fields in the vicinity of event horizon. The distance from
the membrane to event horizoreiand the thickness of the membrané;is ands
should have the same order, therefore we may assume that the thickness of the mem-
braneis alse. Thus, the fields in the membranme [+ ¢, r, 4+ 2¢] can be regarded
as in locally thermal equilibrium. In fact, Hawking radiation also comes from the
vacuum fluctuation in the vicinity of event horizon. Therefore, we might regard
the two event horizons as two independent thermal equilibrium sustems and con-
sider them respectively. According to this idea, we improved brick-wall method.
Because of technical difficulties, we use this improved method. The computation
shows that some mathematical difficulties are greatly decreased by this method

1. SCALAR FIELD

The line element of the Einstein—-Maxwell-dilaton—axion space-time is given
by (Garciaet al,, 1995)
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ds? = gudt? + 2g;,dtdg + gy dr? 4 gedb? + g, de?

:_A—azsinzedtz_ 2asir?0[(r2 +a? — 2Dr) — A] dt do
> >
(r? 4+ a% — 2Dr)? — Aa®sirfd

sir?0 dg? + 2= dr? de?, (1

= g?+Zdri 4y (1)

whereA =r2+a?—2Mr; Y =r% —2Dr +a%cog6; M, a, D are the mass,

the specific angular momentum, and the dilaton charge of the black hole.
The wave equation for scalar particles is

= (v=aa 5o ) =0 @

The spectrum of Hawking radiation for scalar field in such space-time can be
written as

1
2 _
N, = eflo—wo) _ 1’

whereNZ, 8, o, wp are the radiation intensity, the inverse of Hawking temperature,
the energy and the chemical potential of particles. dhé defined by

(3)

wo = mQ+, (4)

wherem is the magnetic quantum numbg&x, = lim _g% is the angular velocity
of event horizonr , is the radius of event horizon'* "
The distribution of particles corresponding to Eq. (3) is given by

)

= gflo—w) _ 1’ ()

whereg is the number of particles in tHeenergy levelgw, is the degeneracy of
energy level.

Quantum field theory in curved space-time illustrates that there are two modes
(superradiant and nonsuperradiant modes) of radiation for bosons in the back-
ground of Einstein—Maxwell-dilaton—axion space-time. The superradiant modes
are the common feature of rotating black holes and are characterized by modes
of 0 < w < mQ, andm > 0 (Chandrasekhar, 1983), while the nonsuperradiant
modes are those @6 > mQ, and anym, wherew is the energy of a field par-
ticle, mis the azimuthal quantum number, afad is the angular velocity of the
black hole event horizon. These two kinds of modes are distinct. It is obvious that
Eqg. (5) is meaningless when< «g for the reason tha, should not be negative
for bosons. In other words, superradiant modes do not satisfy Bose distribution.
Therefore, we think that superradiation does not contribute to black hole entropy.
As for fermion fields, it does not display superradiance but this does not mean that

a
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modes with frequency in the range<Ow < m, do not exist (Unruh, 1974). We
still propose not to consider the “superradiant” part for fermions.

Considering Eg. (5), we s& = w — wp. Thus the wave functio® can be
written as

Cb(t, r,e, ¢) — e—i(E+mQ+)t+im<p+iK(r,9). (6)
Substituting Eq. (6) into Eq. (2), we yield the radial wave number
11 X
2 - — | = Tab — A 2} , 7

wherek, = ‘fj—'f andk, = ‘fj—g are the radial wave number and the angular wave
number, respectively. Improved brick-wall method tells us that the black hole
entropy mainly comes from the vicinity of event horizon. Considering relations

below
. gtga . gtt 2
lim 2£ = —Q., lim =% = @2, (8)
T=T+ Qg e Oy "
we have
GabT*® = G + 201, (E + M )M + g, (E + MR, )* ~ g, E%. (9)

According to semiclassical quantum theory and improved brick-wall model,
the constrain imposed on wave numkeeads

ry+2e
r

++e
wherer . is the event horizory, is a small positive quantity, i.es, < r .
Then free energy can be obtained

BF =Y In(l—e’F). (11)
mkyn,

It is obvious that Eq. (11) is meaningless wherx 0 (for superradiation). This
indicates once more the superradiant moes 0 should be neglected.

The distribution of state density is regarded as being continuous and the free
energy is obtained

BF =/dm/dK9/dbrln(l—e’ﬁE)=—/dm/dl@ﬂ/dEeﬂEn7'_1.

(12)
Substituting Eq. (10) into Eq. (12), we have

B [™ r,+2e ky max +ko
,3F=_—f dE/ dr/ dk(,/ dm
T Jo ri+e 0 —ky

(D SN LR
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wherek, is the angular quantum number correspondingispherically symmet-
ric space-time case. In spherical space-time case, the ramgésofl <m <.
Therefore, we choose the rangenobeing—ky, < m < ky in such case. The ex-
treme of integration in the variablg is due to the fact thdt; » has to be positive.
Integrating with respect ton, kg, r, respectively, we obtain

2 3 3
ﬂF:—é dEg(r +a—2Dr+)i E
7 Jo 3 (rp —r_)? n2efE -1
It should be noted that we used the median theorem in the integration with
respect ta, hences < n < 2¢. We can show the event horizon locateshat=
r>+2Mr —a?=0,i.e., ¢ —r.)(r —r_) =0, wherer.r_ are event horizon and
the inner horizon, respectively. So, we havg, , = n(r+ —r_). Our cut-offe is
not dependent of. Thus, we get the free energy

(14)

273 1 (r2 +a%—2Dr,)®
S e e (15)
45 g4 (ry—r)2  n?

From the relation between entropy and free energy

5 0F
S=8 9B’ (16)

we obtain the entropy of the black hole

s 132§ 8n3i(rf+a2—2Dr+)3i.
p 453 (e —r)2  n?

(17)

¢ andn are ofthe same order, i.e.;~ n. Thus, we haveE ~ = FoIIowmg 't Hooft,

we choose; ~ ¢ = 908. ConS|der|ngthemversetemperatﬂr& w

and the area of event horizén= 47 (r2 + a? — 2Dr..), we canrewrite Eq. (17) as

1
S=-A 18
3 (18)
It is exactly the Bekenstein—Hawking entropy.

The result changes if the black hole is extreme:

Sextr= lim S=

re—r_

8r® [ rr_ T (r2+a2-2Dr.)° e
4 (r2 — 2Dr, + a?)? (ry —r2)2  n2

Thus, we conclude that the entropy of extreme Einstein—Maxwell-dilaton—axion
black hole is zero (Gibbons and Kallosh, 1995). We had better note, we cannot
take limit in Eq. (13) for the reason that Imﬁf oo. Therefore, we must take
limitin Eq. (17).



822 Gao and Shen

2. DIRAC FIELD

In curved space-time, Dirac equation can be written as (Chandrasekhar, 1983)

— i
(D+e—-p)F1+ (@ +m —a)F2 = —=uoGy,

NG
, i
AN+pu—-y)FRo+@+B—-1)F1= EILOGL
i
(D+e" = p")G2— (6 + 7" —a")G1 = —=zuoF2,

V2

(A + ¥ —y")G1— (5 + 5 — )Gz = (19)

i
EMOFL
whereF1, F,, G1, G, are 4-component spinorg; is the mass of the particle;
a, B, v, & I, 7, p, T €tc. are Newman—Penrose symbols; whiles* are, respec-
tively, the complex conjugates af 8 etc., and they are related to the null tetrad
as follows

1 _ = _
o= E(Iwn”m" — my,m*m"), o =l mtm?,
— 1 I KV A mv — MY
B = E(Wn m’ — m,;,m*m”), T = —n,,m1",
1 AV AU AV AN Y
y = E(IWn n' —my;,m“n"), w=—ng,mm",
1 njv =yiARY M AV
g = E(Iwn [V —my.,m“1"), T =|,,m"n",
D =1#3,, A" =n"3,, §=n"d,, §=m'd,. (20)

Choosing the null tetrad below

1 1 /. i
" = —(r?+a®—2Dr, A, 0,a), m* = —— (iasing, 0,1,— |,
A V25 sing
n“:i(r2+a2—2Dr —A,0,a), m* = ! —iasing, 0 1_—i
22 1 1 1 1 ﬁOT* 1 1 ,Sing L

(21)

whereo is defined byo = +/r?2 — 2Dr + ia cosf. The corresponding covariant
null tetrad is

1 ) 1 :
o= 2(A,=%,0,-aAsif6), n, = 5= (A, 5, 0,-aAsir6),
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m, = —2[|asm9, 0,—%, —i(r? +a? — 2Dr)sind],
(0}

m = — [—iasing, 0,—%,i(r? + a? — 2Dr)sing], (22)

20 %

Considering the symmetry of space-time, we set

. . -1
F, = e {(E+mey)t+ime ( r2—2Dr + iacose) f1(r, 0),
Fp = —i (E4+mQ, )t+ime fz(r, 0), G, = —i(E+mQ+)t+im(pgl(r, 0),

Gp = e (B+m2Itime (/12 2Dr + ia cosd) Lga(r, 6), (23)
Then Eg. (19) can be written as
Dgfy + iL_ f, = i (i Mom + auo cos@) o1,
V2 V2
AD;fp — 2L, f1 = —v/2 (i 110v/r% — 2Dr + aug 005'9) 02

Dofy — iL+gl = i (i HoV'r2 —2Dr —apug cos@) fa,

V2 V2
AD1g1 + V2L _gy = —+/2 (i wov'r2 —2Dr —aug cos@) f1,
(24)
where
0 iP 0 iP r—Mm 0 1
Do=-———7—,Di=—+—+2 Ly =— +q+ =ctg,
N T A £ = 5p AT 00

, m
q = a(E + mQ,)sind — sng’ P = (r?+ a%— 2Dr)(E + mQ,) — am.

(25)

Making further transformations

fi=R.()S.(0), @& =R.(r)S(0),
fa=Ri(1)S.(0),  g2=R.(r)S.(6),

we obtain the radial equations and angular equations (for simplicity we set
po = 0)

AD:DgR. =2%?R., L_L,S =-a%Ss,
Do(AD:1Ry) = A°Ry,  L.L_S, =-2%S,, (26)
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Using WKB approximation i.e., settinfR. = e+, we obtain the wave
numbers

r’4+a?—2Dr A(A2 -2
k, = rrrat—2br jo, # 27)
A (r>+a?—2Dr)?
r’4a?—2Dr AX2
ki =——— [E2— — | 28
A \/ (r2+a2—2Dr)? (28)

wherex? is the separation constant. We had better note that in the vicinity of event
horizon Eg. (7) becomes

r?+a®—2Dr Ak?
= |E2—- — % — 29
ke A \/ (r2+a?—-2Dr)? (29)

Comparing Egs. (28), (29) with Eqg. (29), we find that they are of the same form.
Therefore, we conclude that according to the improved brick-wall model two
method of separation variables [Egs. (6) and (23)] are identical.
Completely similar to the scalar field, we obtain the black hole ent&xbye
to Dirac particles
77

S=_--A 30
24 (30)

In summary, we calculated the entropy of Einstein—Maxwell-dilaton—axion
black holes due to bosons and fermions. We consider that the bosons of super-
radiant modes do not satisfy Bose distribution; while fermions do not display
superradiance. Therefore, we propose not to consider this mode. The result shows
that the nonsuperradiant modes do contribute exactly the Bekenstein—Hawking
entropy. Moreover, our cut-off which does not require an angular cut-6éffs
independent of angle. As for the extreme black hole, we found that its entropy
is zero according to brick-wall model.
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