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The entropy of Einstein–Maxwell-dilaton–axion black holes is calculated by using the
improved brick-wall model. Taking into account of the statistical physics, we propose
not to consider the superradiant modes. The result shows that the nonsuperradiant modes
do contribute exactly the area-law entropy for extreme black hole. Moreover, our cut-
off ε which does not require an angular cut-offδ is independent of angleθ . As for the
extreme black hole, we found that its entropy is zero.
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In order to give a statistical explanation of black hole entropy, ’t Hooft pro-
posed brick-wall method in which the black hole entropy is identified with the
entropy of the quantum fields surrounding the black hole itself (’t Hooft, 1985).
Since the density of states approaching the horizon diverges, in order to avoid the
divergence in the entropy, he has to introduce the cut-off of the order of Plank
length, which is interpreted as the position of a “brick wall.” Mathematically, the
region of nonzero wave function is limited inr+ + ε andL, wherer+ is the radius
of event horizon andε, L are ultraviolet cut-off and infrared cut-off, respectively,
andε ¿ r+, L À r+. ’t Hooft himself studied the contribution to the entropy of
Schwarzschild black hole due to scalar field. He found that the leading term of
scalar field entropy is one fourth of the area of event horizon. After this, the method
was applied to scalar field and neutrino field in various black holes background
(Cognola, 1998; Demerset al., 1995; Gao and Shen, 2002; Ghosh and Mitra, 1994;
Lee and Kim, 1996; Shen, 2000, 2002; Shenet al., 1997; Shen and Chen, 1999),
where it showed that the leading term of neutrino field entropy is seven eighth of
the area of event horizon. Recently, the method was extended to the scalar and
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neutrino field in rotating Kerr–Newman black hole space-time (Hoet al., 1997;
Liu and Zhao, 2000), where it has been shown that both scalar and neutrino field
have two kinds of mode: superradiant and nonsuperradiant modes. The entropy is
composed of the superradiant and nonsuperradiant modes. Both modes contribute
simultaneously to the entropy with the same order in terms of the cut-offε. In
particular, the contribution of the superradiant mode is negative. To avoid diver-
gence in this method when the angular velocity tends to zero, the authors propose
to introduce a lower bound of angular velocity. Moreover, from the lower bound of
angular velocity, they obtain theθ dependence structure of cut-off, which naturally
requires an angular cut-offδ. Finally, if the cut-off,ε andδ satisfy a proper relation,
the entropy satisfies the area law.

In this paper, we give the calculation of entropy for Einstein–Maxwell-
dilaton–axion black holes due to scalar and neutrino fields. Here we propose not
to consider the entropy of superradiant modes. We consider that the bosons of
superradiant modes do not satisfy Bose distribution, while fermions do not display
supperradiance (Wald, 1984). Therefore we propose not to consider this modes. In
fact, the nonsuperradiant part do exactly give the Bekenstein entropy. Moreover,
our cut-off which does not require an angular cut-offδ is independent of angleθ .

We have ever met a difficulty when the brick-wall method was applied to
Schwarzschild–de Sitter space-time (Gao and Liu, 2000). Different from non-de
Sitter space-time, there are two event horizons in Schwarzschild–de Sitter space-
time. The two event horizons have different temperatures. Therefore the radiation
between them is not in thermal equilibrium. It is apparent that we should not use
the brick-wall model which is based on the thermal equilibrium in a large scale. In
other words, the regionr+ + ε andL is not in thermal equilibrium. Former work
tells us that the leading term of entropy in the brick-wall method comes from the
contribution of the field very close to the horizon. So, we may assume that there is a
thin membrane of quantum fields in the vicinity of event horizon. The distance from
the membrane to event horizon isε and the thickness of the membrane isδ; ε andδ
should have the same order, therefore we may assume that the thickness of the mem-
brane is alsoε. Thus, the fields in the membrane [r+ + ε, r+ + 2ε] can be regarded
as in locally thermal equilibrium. In fact, Hawking radiation also comes from the
vacuum fluctuation in the vicinity of event horizon. Therefore, we might regard
the two event horizons as two independent thermal equilibrium sustems and con-
sider them respectively. According to this idea, we improved brick-wall method.
Because of technical difficulties, we use this improved method. The computation
shows that some mathematical difficulties are greatly decreased by this method

1. SCALAR FIELD

The line element of the Einstein–Maxwell-dilaton–axion space-time is given
by (Garciaet al., 1995)
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ds2 = gttdt2+ 2gtϕdtdϕ + grr dr2+ gθθdθ
2+ gϕϕdϕ2

= −1− a2 sin2 θ∑ dt2− 2a sin2 θ [(r 2+ a2− 2Dr )−1]∑ dt dϕ

+ (r 2+ a2− 2Dr )2−1a2 sin2 θ∑ sin2 θ dϕ2+
∑
1

dr2+
∑

dθ2, (1)

where1 = r 2+ a2− 2Mr ;
∑ = r 2− 2Dr + a2 cos2 θ ; M , a, D are the mass,

the specific angular momentum, and the dilaton charge of the black hole.
The wave equation for scalar particles is

1√−g

∂

∂xµ

(√−ggµν
∂8

∂xν

)
= 0. (2)

The spectrum of Hawking radiation for scalar field in such space-time can be
written as

N2
ω =

1

eβ(ω−ω0) − 1
, (3)

whereN2
ω, β, ω, ω0 are the radiation intensity, the inverse of Hawking temperature,

the energy and the chemical potential of particles. Theω0 is defined by

ω0 = mÄ+, (4)

wherem is the magnetic quantum number,Ä+ = lim
r→r+

−gtϕ
gϕϕ

is the angular velocity
of event horizon,r+ is the radius of event horizon.

The distribution of particles corresponding to Eq. (3) is given by

al = ωl

eβ(ω−ω0) − 1
, (5)

whereal is the number of particles in thel energy level,ωl is the degeneracy ofl
energy level.

Quantum field theory in curved space-time illustrates that there are two modes
(superradiant and nonsuperradiant modes) of radiation for bosons in the back-
ground of Einstein–Maxwell-dilaton–axion space-time. The superradiant modes
are the common feature of rotating black holes and are characterized by modes
of 0≤ ω ≤ mÄ+ andm > 0 (Chandrasekhar, 1983), while the nonsuperradiant
modes are those ofω > mÄ+ and anym, whereω is the energy of a field par-
ticle, m is the azimuthal quantum number, andÄ+ is the angular velocity of the
black hole event horizon. These two kinds of modes are distinct. It is obvious that
Eq. (5) is meaningless whenω < ω0 for the reason thatal should not be negative
for bosons. In other words, superradiant modes do not satisfy Bose distribution.
Therefore, we think that superradiation does not contribute to black hole entropy.
As for fermion fields, it does not display superradiance but this does not mean that
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modes with frequency in the range 0< ω < mÄ+ do not exist (Unruh, 1974). We
still propose not to consider the “superradiant” part for fermions.

Considering Eq. (5), we setE = ω − ω0. Thus the wave function8 can be
written as

8(t, r, θ , ϕ) = e−i (E+mÄ+)t+imϕ+i K (r,θ ). (6)

Substituting Eq. (6) into Eq. (2), we yield the radial wave number

k2
r =

1

12

[ ∑
sin2 θ

gabTab−1k2
θ

]
, (7)

wherekr ≡ dK
dr andkθ ≡ dK

dθ are the radial wave number and the angular wave
number, respectively. Improved brick-wall method tells us that the black hole
entropy mainly comes from the vicinity of event horizon. Considering relations
below

lim
r→r+

gtϕ

gϕϕ
= −Ä+, lim

r→r+

gtt

gϕϕ
= Ä2

+, (8)

we have

gabTab ≡ gttm
2+ 2gtϕ(E +mÄ+)m+ gϕϕ(E +mÄ+)2 ' gϕϕE2. (9)

According to semiclassical quantum theory and improved brick-wall model,
the constrain imposed on wave numberk reads

nrπ =
∫ r++2ε

r++ε
drkr , (10)

wherer+ is the event horizon,ε is a small positive quantity, i.e.,ε ¿ r+.
Then free energy can be obtained

βF =
∑

mkθnr

ln(1− e−βE). (11)

It is obvious that Eq. (11) is meaningless whenE < 0 (for superradiation). This
indicates once more the superradiant modesE < 0 should be neglected.

The distribution of state density is regarded as being continuous and the free
energy is obtained

βF =
∫

dm
∫

dkθ

∫
dbr ln(1− e−βE) = −

∫
dm

∫
dkθβ

∫
dE

nr

eβE − 1
.

(12)

Substituting Eq. (10) into Eq. (12), we have

βF = −β
π

∫ ∞
0

d E
∫ r++2ε

r++ε
dr
∫ kθ max

0
dkθ

∫ +kθ

−kθ

dm

× 1

1

[ ∑
sin2 θ

gϕϕE2−1k2
θ

] 1
2 1

eβE − 1
, (13)
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wherekθ is the angular quantum number corresponding tol in spherically symmet-
ric space-time case. In spherical space-time case, the range ofm is −l ≤ m≤ l .
Therefore, we choose the range ofm being−kθ ≤ m≤ kθ in such case. The ex-
treme of integration in the variablekθ is due to the fact thatk1,2 has to be positive.
Integrating with respect tom, kθ , r , respectively, we obtain

βF = −β
π

∫ ∞
0

d E
2

3

(r 2
+ + a2− 2Dr+)3

(r+ − r−)2

ε

η2

E3

eβE − 1
. (14)

It should be noted that we used the median theorem in the integration with
respect tor , henceε < η < 2ε. We can show the event horizon locates at1 =
r 2+ 2Mr − a2 = 0, i.e., (r − r+)(r − r−) = 0, wherer+r− are event horizon and
the inner horizon, respectively. So, we have1|r+η = η(r+ − r−). Our cut-offε is
not dependent onθ . Thus, we get the free energy

F = −2π3

45

1

β4

(r 2
+ + a2− 2Dr+)3

(r+ − r−)2

ε

η2
. (15)

From the relation between entropy and free energy

S= β2∂F

∂β
, (16)

we obtain the entropy of the black hole

S= β2∂F

∂β
= 8π3

45

1

β3

(r 2
+ + a2− 2Dr+)3

(r+ − r−)2

ε

η2
. (17)

ε andη are of the same order, i.e.,ε ∼ η. Thus, we haveε
η2 ∼ 1

ε
. Following ’t Hooft,

we chooseε
η2 ∼ 1

ε
= 90β. Considering the inverse temperatureβ = 4π (r 2

+−2Dr++a2)
r+−r−

and the area of event horizonA = 4π (r 2
+ + a2− 2Dr+), we can rewrite Eq. (17) as

S= 1

4
A. (18)

It is exactly the Bekenstein–Hawking entropy.
The result changes if the black hole is extreme:

Sextr= lim
r+→r−

S= 8π3

45

[
r+r−

4π (r 2+ − 2Dr+ + a2)2

]3 (r 2
+ + a2− 2Dr+)3

(r+ − r−)2

ε

η2
= 0

Thus, we conclude that the entropy of extreme Einstein–Maxwell-dilaton–axion
black hole is zero (Gibbons and Kallosh, 1995). We had better note, we cannot
take limit in Eq. (13) for the reason that lim

r H→r−
β = ∞. Therefore, we must take

limit in Eq. (17).
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2. DIRAC FIELD

In curved space-time, Dirac equation can be written as (Chandrasekhar, 1983)

(D + ε − ρ)F1+ (δ̄ + π − α)F2 = i√
2
µ0G1,

(1′ + µ− γ )F2+ (δ + β − τ )F1 = i√
2
µ0G2,

(D + ε∗ − ρ∗)G2− (δ + π∗ − α∗)G1 = i√
2
µ0F2,

(1′ + µ∗ − γ ∗)G1− (δ̄ + β∗ − τ ∗)G2 = i√
2
µ0F1, (19)

whereF1, F2, G1, G2 are 4-component spinors;µ0 is the mass of the particle;
α, β, γ , ε, µ, π, ρ , τ etc. are Newman–Penrose symbols; whileα∗,β∗ are, respec-
tively, the complex conjugates ofα, β etc., and they are related to the null tetrad
as follows

α = 1

2
(lµ;νn

µm̄ν −mµ;νm̄
µm̄ν), ρ = lµ;νm

µm̄ν ,

β = 1

2
(lµ;νn

µmν −mµ;νm̄
µmν), π = −nµ;νm̄

µl ν ,

γ = 1

2
(lµ;νn

µnν −mµ;νm̄
µnν), µ = −nµ;νm̄

µmν ,

ε = 1

2
(lµ;νn

µl ν −mµ;νm̄
µl ν), τ = lµ;νm

µnν ,

D = lµ∂µ, 1′ = nµ∂µ, δ = nµ∂µ, δ̄ = m̄µ∂µ. (20)

Choosing the null tetrad below

lµ = 1

1
(r 2+ a2− 2Dr,1, 0,a), mµ = 1√

2σ̄

(
ia sinθ , 0, 1,

i

sinθ

)
,

nµ = 1

26
(r 2+ a2− 2Dr,−1, 0,a), m̄µ = 1√

2σ̄∗

(
−ia sinθ , 0, 1,

−i

sinθ

)
,

(21)

whereσ̄ is defined by ¯σ = √r 2− 2Dr + ia cosθ . The corresponding covariant
null tetrad is

lµ = 1

1
(1,−6, 0,−a1 sin2 θ ), nµ = 1

26
(1,6, 0,−a1 sin2 θ ),
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mµ = 1√
2σ

[ia sinθ , 0,−6,−i (r 2+ a2− 2Dr ) sinθ ],

m̄µ = − 1√
2σ∗ [−ia sinθ , 0,−6, i (r 2+ a2− 2Dr ) sinθ ], (22)

Considering the symmetry of space-time, we set

F1 = e−i (E+mÄ+)t+imϕ
(√

r 2− 2Dr + ia cosθ
)−1

f1(r, θ ),

F2 = e−i (E+mÄ+)t+imϕ f2(r, θ ), G1 = e−i (E+mÄ+)t+imϕg1(r, θ ),

G2 = e−i (E+mÄ+)t+imϕ(
√

r 2− 2Dr + ia cosθ )−1g2(r, θ ), (23)

Then Eq. (19) can be written as

D0 f1+ 1√
2

L− f2 = 1√
2

(
iµ0

√
r 2− 2Dr + aµ0 cosθ

)
g1,

1D1 f2−
√

2L+ f1 = −
√

2
(
iµ0

√
r 2− 2Dr + aµ0 cosθ

)
g2,

D0 f2− 1√
2

L+g1 = 1√
2

(
iµ0

√
r 2− 2Dr − aµ0 cosθ

)
f2,

1D1g1+
√

2L−g2 = −
√

2
(
iµ0

√
r 2− 2Dr − aµ0 cosθ

)
f1,

(24)

where

D0 = − ∂
∂r
− iP

1
, D1 = ∂

∂r
+ iP

1
+ 2

r − M

r
, L± = ∂

∂θ
± q + 1

2
ctgθ ,

q = a(E +mÄ+) sinθ − m

sinθ
, P = (r 2+ a2− 2Dr )(E +mÄ+)− am.

(25)

Making further transformations

f1 = R−(r )S−(θ ), g1 = R+(r )S−(θ ),

f2 = R+(r )S+(θ ), g2 = R−(r )S+(θ ),

we obtain the radial equations and angular equations (for simplicity we set
µ0 = 0)

1D1D0R− = λ2R−, L−L+S− = −λ2S−,

D0(1D1R+) = λ2R+, L+L−S+ = −λ2S+, (26)
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Using WKB approximation i.e., settingR± = eK± , we obtain the wave
numbers

k+ = r 2+ a2− 2Dr

1

√
E2− 1(λ2− 2)

(r 2+ a2− 2Dr )2
, (27)

k− = r 2+ a2− 2Dr

1

√
E2− 1λ2

(r 2+ a2− 2Dr )2
, (28)

whereλ2 is the separation constant. We had better note that in the vicinity of event
horizon Eq. (7) becomes

kr = r 2+ a2− 2Dr

1

√
E2− 1k2

θ

(r 2+ a2− 2Dr )2
. (29)

Comparing Eqs. (28), (29) with Eq. (29), we find that they are of the same form.
Therefore, we conclude that according to the improved brick-wall model two
method of separation variables [Eqs. (6) and (23)] are identical.

Completely similar to the scalar field, we obtain the black hole entropySdue
to Dirac particles

S= 7

2

7

4
A. (30)

In summary, we calculated the entropy of Einstein–Maxwell-dilaton–axion
black holes due to bosons and fermions. We consider that the bosons of super-
radiant modes do not satisfy Bose distribution; while fermions do not display
superradiance. Therefore, we propose not to consider this mode. The result shows
that the nonsuperradiant modes do contribute exactly the Bekenstein–Hawking
entropy. Moreover, our cut-offε which does not require an angular cut-offδ is
independent of angleθ . As for the extreme black hole, we found that its entropy
is zero according to brick-wall model.
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